If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+12t+1=0
a = 4; b = 12; c = +1;
Δ = b2-4ac
Δ = 122-4·4·1
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{2}}{2*4}=\frac{-12-8\sqrt{2}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{2}}{2*4}=\frac{-12+8\sqrt{2}}{8} $
| 68=6.6x+18.6 | | 0=x^2-30x-15 | | -7v=13 | | -6(8+3a)-8a=-5(a-3) | | 2x^2-6x=416 | | -22=5+9x | | 1x+2=5x+9 | | k-23=72 | | 3(y-1)=7 | | (4+8)^2/4•5=-36x | | X+6/10=2/5+x-3/4 | | 1x+2=5x+8 | | 3k+6=51 | | 90+0.7x=70+0.9x | | -3(2t-1)=-2 | | d+-57=37 | | 3x+12-17=2(x+5)+x-15 | | -8=2(y+5)-4y | | 5y-4+y+32=8y+40-6y | | 3x=12=4x-12 | | .5x-3=1.5x+4= | | 5x-5x+15=15 | | 4x+11/3=11 | | u+2=69 | | y/9-5=8 | | 7x-(5x-5)=23 | | 14+2y-2=10y-12 | | X2+x=240 | | -64=-4(2n+6) | | 8/11x+1/3=3/7-3/11x+3/7 | | 8+4K=-6-4+k | | 6-9x=8x-36 |